New paper out in pre-print

After thinking a lot about pre-print and how they fit in the world of plant research, I have decided to give it a try! My first pre-print entitled “Dew-induced transpiration suppression impacts the water and isotope balances of Colocasia leaves is now available on the bioRxiv: see the article!

The paper examines the effects of dew on transpiration suppression in Colocasia esculenta leaves using stable isotopes of water to track changes in the water status of the leaves. The article has been submitted to a peer-reviewed journal.

Abstract: Foliar uptake of water from the surface of leaves is common when rainfall is scarce and non-meteoric water such as dew or fog is more abundant. However, many species in more mesic environments have hydrophobic leaves that do not allow the plant to uptake water. Unlike foliar uptake, all species can benefit from dew- or fog-induced transpiration suppression, but despite its ubiquity, transpiration suppression has so far never been quantified. Here, we investigate the effect of dew-induced transpiration suppression on the water balance and the isotopic composition of leaves via a series of experiments. Characteristically hydrophobic leaves of a tropical plant, Colocasia esculenta, are misted with isotopically enriched water to reproduce dew deposition. We measure leaf water isotopes and water potential and find that misted leaves exhibit a higher water potential (p < 0.05) and a more depleted water isotopic composition than misted leaves (p < 0.001), suggesting a ∼30% decrease in transpiration rate (p < 0.001) compared to control leaves. We propose three possible mechanisms governing the interaction of water droplets with leaf energy balance. Comparing previous studies on foliar uptake to our results, we conclude that transpiration suppression has an effect of similar amplitude, yet opposite sign to foliar uptake on leaf water isotopes.

https://www.biorxiv.org/content/early/2017/08/30/178293
doi: https://doi.org/10.1101/178293


New paper out in PCE

My new paper is finally available online on Plant, Cell & Environment. For this paper, entitled “Leaf water 18O and 2H maps show directional enrichment discrepancy in Colocasia esculenta“, we looked at spatial patterns of water isotopes in Colocasia esculenta leaves. See the abstract below for a quick overview of the study and results or head to the PCE website to read the full paper.

Abstract

Spatial patterns of leaf water isotopes are challenging to predict because of the intricate link between vein and lamina water. Many models have attempted to predict these patterns, but to date most have focused on monocots with parallel veins. These provide a simple system to study, but do not represent the majority of plant species. Here, a new protocol is developed using a Picarro induction module coupled to a cavity ringdown spectrometer to obtain maps of the leaf water isotopes (18O and 2H). The technique is applied to Colocasia esculenta leaves. The results are compared to isotope ratio mass spectrometry. In C. esculenta, a large enrichment in the radial direction is observed, but not in the longitudinal direction. The string-of-lakes model fails to predict the observed patterns, while the Farquhar-Gan model is more successful, especially when enrichment is accounted for along the radial direction. Our results show that reticulate veined leaves experience a larger enrichment along the axis of the secondary veins than along the midrib. We hypothesize that this is due to the lower major/minor vein ratio that leads to longer pathways between major veins and sites of evaporation.